1. This is one potential solution of many, many solutions. To improve this further, annotate the data flow arrows. Data flow arrows are not supposed to cross over each other… sometimes it is hard though, so just do your best. More information on DFDs straight from the syllabus here: https://digisoln.com/technical_representation/dfd IT IS WORTH A READ!

[image:]

2. Pseudocode sample (easier to read if you turn off spell check), assumes:
a. length is pre-defined function that returns count of elements in an array
b. ord and chr to convert from Unicode integers to characters
c. mod as modulo division (remainder division)

BEGIN
 INPUT plain_text AS ARRAY
 INPUT key1 AS ARRAY
 INPUT key2 AS ARRAY
 VARIABLE cipher_text AS ARRAY
 VARIABLE i AS INTEGER
 i = 0
 WHILE (i < length(key1) or i < length(key2))
 base26_char = ord(plain_text[i]) - ord("A")
 key1_shift = ord(key1[i]) - ord("A")
 key2_shift = key2[i]
 cipher_num = (base26_char + key1_shift + key2_shift) mod 26
 cipher_char = chr(cipher_num + ord("A"))
 cipher_text[i] = cipher_char
 i = i + 1
 END WHILE
END

In Python (FYI):
	plain_text = ["Z","E","B","R","A"]
key1 = ["A","B","B","B","A"]
key2 = [1,2,1,2,1]
cipher_text = []

i = 0
while i < len(key1): #or key2:
 base26_char = ord(plain_text[i]) - ord("A")
 key1_shift = ord(key1[i]) - ord("A")
 key2_shift = key2[i]
 cipher_num = (base26_char + key1_shift + key2_shift) % 26
 cipher_char = chr(cipher_num+ord("A"))
 cipher_text.append(cipher_char)
 i=i+1
print(cipher_text)

3.
If ["A", "I", "B"] generates ["W", "I", "Z"], then this is a total shift of [4, 0, 2].
Looking closer at the shift we see the values are (floor) divided by 2:shift = (base – (key // 2)) mod 26

Given that floor division by 2 is used, the original shift values would have been [8, 0, 4]. key = BASE26(key1[counter])

This statement shows the key was in letters, therefore the original encryption key given would have been the characters representing [8,0,4] which are:
Encryption Key
I
A
E

4.BEGIN UNICODE_CHARACTER(Base26 integer, Boolean upper):
 IF (upper) THEN
 RETURN character(integer + ordinal("A"))
 ELSE
 RETURN character(integer + ordinal("a"))
 END IF
END UNICODE_CHARACTER

Extension: BASE26 function without using the keyword ELSE:BEGIN UNICODE_CHARACTER(Base26 integer, Boolean upper):
 IF (upper) THEN
 RETURN character(integer + ordinal("A"))
 END IF
 RETURN character(integer + ordinal("a"))
END UNICODE_CHARACTER

5. The colours are shown:
I. Caesar Shift
II. Polyalphabetic ciphers (e.g. Vigenère and Gronsfeld cipher)
III. One-time Pad
IV. Hashing

	Plaintext: hi
Pad: abcd
Ciphertext:
hj

	Uses a series of interwoven Caesar ciphers based on the letters of a keyword
	SHA-256 output will always have a fixed 256-bits length
	Only has a maximum of 26 possible key combinations

	Weakest of the 4 encryption or hashing techniques listed here
	The length of the key guarantees that the ciphertext is not vulnerable due to repetition in the way that the Vigenère cipher is
	A key of “N” or 13 will give the same message, whether shifting right or left (ROT13)
	If plaintext is longer than the cipher key, wrap back in the key and reuse the letters of the key in order

	taking an input string of any length and giving out an output of a fixed length
	Monoalphabetic: cipher uses fixed substitution over the entire message
	Provided the key is kept secret and never reused, this is the strongest form of encryption here, given its true randomness
	A salt is random data that is used as an additional input to a one-way function, to defend against pre-computed hash matching

	Identical to Vigenère cipher, except numbers are used as the key instead of letters
	Used historically by KGB officers
	one-way cryptographic algorithm
	Plaintext: abcd
Key: bc
Ciphertext:
bddf

6.
Output is ['x', 'y', 'x', 'y', 'x'], which is useful to wrap key in Vigenère (would work for Gronsfeld too).

In Python (FYI):def KEYWRAP(plaintext, key):
 index = 0
 counter = len(key)
 while counter < len(plaintext):
 value = key[index]
 key.append(value) #key[counter] = value
 if index < len(key):
 index = index + 1
 else:
 index = 0
 #END IF
 counter = counter + 1
 #END WHILE
 return key
#END KEYWRAP

key = ["x","y"]
plaintext = ["h","e","l","l","o"]
key = KEYWRAP(plaintext, key)
print(key)

7. Note: the extension to this question suggests rewriting the algorithms so that so that they do not have to assume capital letters as plaintext. Use answer to question 4 if you want to do this. You could further modify for spaces and punctuation; however it must be stressed maintaining plain text patterns in encryption is a bad idea for security.

Analysing the main difference between the 4:
Caesar: the shift amount is constant (equivalent to a key of [3, 3, 3, 3, 3, ...])
Caesar

 CONSTANT key = 3

Gronsfeld: the key is an array of variable integers, which wraps repeatedly the length of the plain text message:
Gronsfeld

 INPUT key1 as Array
 key1 = KEYWRAP(plaintext, key1)

 ...
 key = key1[counter]

Vigenère: same as Gronsfeld (i.e. key wraps length of message), but key is letters:
Vigenère

 key = BASE26(key1[counter])

One-time Pad: Key will always be longer than message, so no need to wrap:
One-time Pad

 INPUT key1 as Array

8. I only did some of the harder queries, hopefully you are OK with the rest:
Query XVIII:
SELECT COUNT(*), category
FROM books
WHERE title LIKE "%the%" OR title LIKE "%The%"
GROUP BY category
Query IX, X, XI, XII, XIII:
SELECT COUNT(*), AVG(price), category
FROM books
WHERE price < 20
GROUP BY category
HAVING AVG(price) > 16 AND NOT(COUNT(*)==1)
ORDER BY AVG(price) DESC
Query XIV, XV:
SELECT title, category, price
FROM books
WHERE price > (
 SELECT price
 FROM books
 WHERE title == "New Moon"
)
ORDER BY price DESC, category ASC
	Statements executed in order:
	What does this SQL do?

	CREATE TABLE 'sales' (
	'book_num'	INTEGER,
	'cust_email'	INTEGER,
	PRIMARY KEY('book_num','cust_email')
);
	Creates table sales with composite primary key (i.e. the combination of book_num and cust_email will uniquely identify any row)

	SELECT sales.cust_email, books.title
FROM books INNER JOIN sales
ON books.num == sales.book_num
	Gives book titles and emails of purchased books only

	SELECT s.cust_email, b.title
FROM books b LEFT JOIN sales s
ON b.num == s.book_num
	Gives all book titles (even the ones that weren’t purchased) and the emails of customers that purchased those books

9. see answer to question 7 about patterns. Patterns make it more obvious what you are trying to hide.

10. Explain the following algorithmic terms using the samples provided:
	Sample
	Criteria

Terms
	Explanation

	BEGIN module1
 REPEAT
 do long process
 UNTIL job done
END module1

BEGIN module2
 WHILE job not done
 do long process
 END WHILE
END module2
	Efficiency

Pre-test vs Post-test loops

	module1 post-test happens minimum ONCE

module2 happens minimum of ZERO times (pre-test)

If long process is already done before module launch, it should be avoided. This one more efficient in this case.

	BEGIN
 x = INPUT team_scoreA
 y = INPUT team_scoreB
 winner1(x,y)
 winner2(x,y)
END

BEGIN winner1(a,b)
 IF a > b THEN
 PRINT "Winner Team A"
 ELSE
 PRINT "Winner Team B"
 END IF
END

BEGIN winner2(a,b)
 IF a == b THEN
 PRINT "Teams are drawn"
 ELSE
 IF a > b THEN
 PRINT "Winner Team A"
 ELSE
 PRINT "Winner Team B"
 END IF
 END IF
END
	Accuracy

Modularity

Selection - Multiple branches

Global vs Local variables
	winner1 does not account for draw, and incorrectly would reward Team B as winner in a draw.

winner2 accounts for draw

Therefore, winner2 more accurate algorithm in this case.

Modularity shown with both winner functions. Assuming x and y global (from main algorithm), a and b local to modules (these are passed in as parameters to the function calls). This means value of a in module1 cannot be accessed by module2. Values in x and y can (likely) be accessed in both modules, although better practise (perhaps) would be to label these GLOBAL.

image1.png
BOAT
CAPTAIN

1

Registration

Payment

4

BOAT DATA
PASSENGER DATA
2
Request REQUEST DATA
3 JOURNEY DATA
Allocate
Code
FINANCIAL 4 Stored payment data
INSTITUTION|
Transport
\ D |PAYMENT DATA
5

